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Ideals

Let κ be a cardinal (most of the time: regular and uncountable).
An ideal on κ is a collection of small subsets of κ.

Definition 1

A collection I ⊆ P(κ) is an ideal (on κ) if:

∅ ∈ I, κ 6∈ I,

∀A,B A ∈ I and B ⊆ A implies B ∈ I, and

∀A,B A,B ∈ I implies A ∪ B ∈ I.

We will also demand our ideals to be non-principal, that is {α} ∈ I for
every α < κ, and we demand them to be closed under <κ-unions.

Examples: the bounded ideal, the nonstationary ideal NSκ, ...

Note that our additional demands imply that any ideal contains the
bounded ideal.
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Cantor spaces

Let P(κ) ≈ κ2 = {g | g : κ→ 2}. This collection is usually given a
topology based on bounded ideal: The κ-Cantor space is the set κ2 with
the topology given by the basic open sets (which are also easily seen to be
closed)

[f ] = {g ∈ κ2 | f ⊆ g}

for f ∈ <κ2 =
⋃
α<κ

α2.

However, we would obtain the same topology if we took as basic open sets
all sets of the form [f ] where f is a partial function from κ to 2 of size less
than κ, i.e. a function with domain in the bounded ideal.

If κ = ω, this is certainly the most natural topology on the space ω2.
However, in particular if κ > ω, we can equally consider topologies based
on ideals other than bdκ.
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Ideal Topologies

Let I be an ideal on κ.

Definition 2

The I-topology is the topology with the basic open sets of the form [f ]
where dom(f ) ∈ I (as before, each [f ] is also closed).

Open sets are (as always) arbitrary unions of basic open sets, and we
call open sets in the I-topology I-open sets, and similarly use
I-closed, ...

Note that the I-topology refines the bounded topology: it has more
open sets (and thus also more closed sets, ...).

In case I = NSκ, the basic open sets are thus induced by functions
with non-stationary domain. We call the resulting topology the
nonstationary topology (on κ).
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Basic cardinality observations

In the bounded topology on κ2, one usually assumes 2<κ = κ, and then
there are κ-many basic open sets, and 2κ-many open sets (while there are
22

κ
-many subsets of κ2). If I contains an unbounded subset of κ however,

we get the maximal possible number of open sets:

Observation 3

Assume that I contains an unbounded subset A of κ. Then,

1 there are 2κ-many disjoint I-basic open sets with union κ2, and

2 there are 22
κ

-many I-open sets.
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Tall ideals

Many natural properties of ideals correspond to prominent examples of
subsets of our spaces to be topologically simple.

Tallness is a very natural property of ideals:

Definition 4

An ideal I is tall if every unbounded set has an unbounded subset in I.

Observation 5

NSκ is tall.
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On the collection of unbounded sets

Let ubκ ⊆ κ2 denote the collection of unbounded subsets of κ.

Observation 6

I is tall if and only if ubκ is I-open.

Proof: First, assume that I is a tall ideal. Let cAi denote the constant
function with domain A and value i . Then,

ubκ =
⋃
{[cA1 ] | A ∈ I ∩ ubκ} is I-open.

Assume ubκ is I-open. Given A ∈ ubκ, there is an I-basic open set
[f ] ⊆ ubκ with A ∈ [f ]. Since [f ] ⊆ ubκ, f takes value 1 on some B ∈ ubκ
with B ⊆ dom(f ) ∈ I. Hence, B ⊆ A is unbounded, as desired. �

A more intricate argument shows that for no I is ubκ an I-Fσ set (a
κ-union of I-closed sets). Hence, if I is tall, then there is an I-open set
that is not I-Fσ.
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The Club subsets of κ

Let Clubκ denote the collection of club subsets of κ.

A similar argument as for ubκ shows: If I = NSκ, then Clubκ is not I-Fσ.

However, as soon as I contains a stationary subset of κ, we have the
following contrasting result:

Observation 7

I contains a stationary subset of κ if and only if Clubκ is I-closed.

Observation 8

Clubκ is I-open if and only if I contains the set of all limit ordinals, and
for every nonstationary set N of limit ordinals, there is a regressive
function f : N → κ such that⋃

α∈N
[f (α), α) ∈ I.
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Stationary tallness

Stationary tallness relates to NSκ as does tallness to bdκ:

Definition 9

I is stationary tall if every stationary set S has a stationary subset in I.

Observation 10

If I contains a club subset C of κ, then I is stationary tall.

Proof: If S is stationary, S ∩ C ⊆ C ∈ I is stationary. �

An ideal I is maximal if whenever A and B are disjoint subsets of κ, at
least one of them is in I.

Observation 11

Every maximal ideal is stationary tall.

Proof: Assume that S is a stationary subset of κ. Write S as disjoint
union of two stationary sets S0 ∪ S1, using Solovay’s theorem. One of
them has to be in I by maximality. �
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The Club Filter

Cκ denotes the collection of subsets of κ that contain a club. Usually, the
club filter is the standard example of a complicated set – in the bounded
topology, it is not Borel (Halko-Shelah).

Observation 12

I is stationary tall if and only if Cκ is I-closed.

Observation 13

I contains a club subset of κ if and only if Cκ is I-open.
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Non-I-Borel sets

However, the Halko-Shelah result generalizes to the nonstationary
topology. I-Borel sets are (iteratively) generated from the I-open sets by
taking κ-unions and complements.

Proposition 14

If I = NSκ, then Cκ is not I-Borel.

Assuming that 2<κ = κ, we can construct a Bernstein set, and such a set
can easily be shown to not be I-Borel.

Proposition 15

If 2<κ = κ, then there is a non-I-Borel set (for any I).
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Tree forcing topologies

Ideal topologies are in fact particular instances of tree forcing topologies.

Definition 16

A κ-tree is a subset of 2<κ closed under initial segments.

A branch through a κ-tree T is some x ∈ 2κ such that x � α ∈ T for
every α < κ. [T ] ⊆ 2κ denotes the set of all branches through T .

A tree forcing notion P on κ is a notion of forcing in which conditions
are κ-trees, including the full tree 2<κ, ordered by inclusion.

Such a forcing notion P is topological if for any two R, S ∈ P and
any x ∈ [R] ∩ [S ], there is T ∈ P such that x ∈ [T ] ⊆ [R] ∩ [S ].

If P is a topological notion of tree forcing on κ, we let the P-topology
be the topology on 2κ generated by the basic open sets of the form
[T ], for conditions T ∈ P.
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Example: κ-Cohen forcing

The conditions in κ-Cohen forcing are the elements of 2<κ, ordered by
reverse inclusion. But we can also identify κ-Cohen forcing with a tree
forcing notion: Given s ∈ 2<κ, let

Ts = {t ∈ 2<κ | t ⊆ s ∨ s ⊆ t}.

It is easy to see that κ-Cohen forcing corresponds to the tree forcing
notion consisting of conditions Ts for s ∈ 2<κ, and that the topology
generated by κ-Cohen forcing (when viewed as a tree forcing notion on κ)
is the standard bounded topology on 2κ.
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Grigorieff forcing

Definition 17

Let κ be an infinite cardinal and let I be an ideal on κ. GI , Grigorieff
forcing with the ideal I is the notion of forcing consisting of conditions
which are partial functions p from κ to 2 such that dom(p) ∈ I, ordered
by inclusion.

We can view GI as a tree forcing by identifying a condition p ∈ GI with
the tree T on 2<κ which we inductively construct as follows:

∅ ∈ T . Given t ∈ T of order-type α, let t_0 ∈ T if p(α) 6= 1, and let
t_1 ∈ T if p(α) 6= 0 (these are both supposed to include the cases when
α is not in the domain of p). At limit levels α, we extend every branch
through the tree constructed so far.

It is easy to see that these two forcings are isomorphic. Then, if T is the
tree on 2<κ corresponding to the condition p ∈ GI , we have [T ] = [p].
Hence, the GI-topology is exactly the I-topology, and GI is topological.
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κ-Silver forcing

Definition 18

Let κ be a regular uncountable cardinal. κ-Silver forcing (or κ-club Silver
forcing) Vκ is the notion of forcing consisting of conditions p which are
partial functions from κ to 2 such that the complement of the domain of p
is a club subset of κ.

Note that Vκ is a dense subset of Grigorieff forcing with NSκ. This yields
that Vκ can be viewed as a κ-tree forcing notion. In fact, whenever p is a
condition in GNSκ and x ∈ 2κ is such that p ⊆ x , then p can be extended
to a condition q ⊆ x in Vκ. This easily yields that those two notions of
forcing generate the same topology, and hence that the Vκ-topology is
exactly the nonstationary topology.
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Unsursprisingly, combinatorial properties of tree forcing notions P yield
properties of their corresponding topologies. For example, if P is
<κ-distributive, then the P-topology yields a κ-Baire space (i.e., the
intersection of κ-many open dense sets of that space is nonempty).

Friedman, Khomskii and Kulikov (Regularity Properties of the generalized
Reals, Annals of Pure and Applied Logic, 2016) investigated such
consequences of a slight strengthening of Axiom A for κ-tree forcing
notions. If κ is inaccessible, the classical proof that Silver forcing satisfies
Axiom A also shows that Vκ satisfies this strong form of Axiom A. We are
going to show that a more intricate argument yields the same result under
the assumption of ♦κ – note that by results of Shelah, ♦κ holds whenever
κ > ω1 is a successor cardinal for which 2<κ = κ. This will allow us to
infer results on the nonstationary topology on 2κ for many cardinals κ
(namely, all regular cardinals κ > ω1 that satisfy 2<κ = κ, and also for
κ = ω1 in case ♦ω1 holds).
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Axiom A∗

The following slight strengthening of Axiom A for κ-tree forcing notions
was introduced by Friedman, Khomskii and Kulikov:

Definition 19

A notion 〈P,≤〉 of tree forcing on κ satisfies Axiom A∗ if there are
orderings {≤α| α < κ} with ≤0=≤, satisfying:

1 q ≤β p implies q ≤α p (i.e., ≤β⊆≤α) for all α ≤ β.

2 If 〈pα | α < λ〉 is a sequence of conditions in P and λ ≤ κ, satisfying
that pβ ≤α pα for all α < β < λ, then there is q ∈ P such that
q ≤α pα for all α < λ.

3 For all p ∈ P, all D that are dense below p in P, and all α < κ, there
exists E ⊆ D of size at most κ, and q ≤α p such that E is predense
below q, and such that additionally [q] ⊆

⋃
{[r ] | r ∈ E}.
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Friedman-Khomskii-Kulikov

Theorem 20 [Friedman-Khomskii-Kulikov]

If a tree forcing notion P satisfies Axiom A∗, then the nowhere dense sets
in the P-topology are closed under κ-unions, i.e., all P-meager sets are
P-nowhere dense.

Corollary 21

If κ is inaccessible and I = NSκ, then I-meager ≡ I-nowhere dense.

Definition 22

X ⊆ 2κ satisfies the property of Baire in the P-topology in case X can be
written in the form X = O∆M, where O is P-open, and M is P-meager.

Theorem 23 [Friedman-Khomskii-Kulikov]

If κ is inaccessible and every ∆1
1-subset of 2κ satisfies the property of Baire

(in the bounded topology) – which is consistent relative to ZFC – then it
does so also in the Vκ-topology, i.e., the nonstationary topology on 2κ.
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Axiom A∗, once again

Let me remind you once again about Axiom A∗:

Definition 24

A notion 〈P,≤〉 of tree forcing on κ satisfies Axiom A∗ if there are
orderings {≤α| α < κ} with ≤0=≤, satisfying:

1 q ≤β p implies q ≤α p (i.e., ≤β⊆≤α) for all α ≤ β.

2 If 〈pα | α < λ〉 is a sequence of conditions in P and λ ≤ κ, satisfying
that pβ ≤α pα for all α < β < λ, then there is q ∈ P such that
q ≤α pα for all α < λ.

3 For all p ∈ P, all D that are dense below p in P, and all α < κ, there
exists E ⊆ D of size at most κ, and q ≤α p such that E is predense
below q, and such that additionally [q] ⊆

⋃
{[r ] | r ∈ E}.
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κ-Silver forcing satisfies Axiom A∗

Theorem 10

If ♦κ holds, then V = Vκ satisfies Axiom A∗.

Proof: For any α < κ and p, q ∈ V, let q ≤α p if q ≤ p and the first
α-many elements of the complements of the domains of p and of q are the
same. It is clear (or at least easy to check) that Items (1) and (2) in
Definition 5 are thus satisfied, and we only have to verify Item (3).

Let p ∈ V, let α < κ, and let D ⊆ V be dense below p. We need to find
q ≤α p and E ⊆ D of size at most κ such that E is predense below q. Fix
a ♦κ-sequence 〈Ai | i < κ〉: ∀A ⊆ κ {i < κ | A ∩ i = Ai} is a stationary
subset of κ.

We inductively construct a decreasing sequence 〈pi | i ≤ κ〉 of conditions
in V with pi = p for i ≤ α, and a sequence 〈αi | i < κ〉 of ordinals with
the property that 〈αj | j ≤ i〉 enumerates the first (i + 1)-many elements
of κ \ dom(pi ) for every i ≤ κ, as follows. Let 〈αi | i ≤ α〉 enumerate the
first α + 1-many elements of the complement of the domain of p.
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Assume that we have constructed pi for some i ≥ α, and also αj for j ≤ i .

Using that D is dense below p, let q0i ≤ pi be such that

q0i (αj) = Ai (j) for all j < i ,

q0i (αi ) = 0, and

q0i ∈ D,

and let q1i ≤ q0i �(dom(q0i ) \ {αi}) be such that

q1i (αi ) = 1, and

q1i ∈ D.

Let pi+1 = q1i �(dom(q1i ) \ {αj | j ≤ i}), and note that pi+1 ≤i pi .
Let αi+1 be the least element of κ \ dom(pi+1) above αi .
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For limit ordinals i ≤ κ, let pi =
⋃

j<i pj , and if i < κ, let αi =
⋃

j<i αj be
the least element of κ \ dom(pi ). Let q = pκ, and let
E = {q0i | i < κ} ∪ {q1i | i < κ}. To verify Axiom A, we want to show that
E is predense below q.

Thus, let r ≤ q be given. Using the properties of our diamond sequence,
pick i < κ such that i ≥ α, and such that for all j < i with αj ∈ dom(r),
Ai (j) = r(αj). Pick δ ∈ {0, 1} such that r(αi ) = δ in case αi ∈ dom(r).
Then, qδi is compatible to r , as desired.

In order to check the additional property for Axiom A∗, note that any
extension s of q to a total function from κ to 2 can be treated in the same
way as r above, yielding some i < κ and δ ∈ {0, 1} such that s ∈ [qδi ]. �
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So what does Axiom A∗ have to do with meager sets?

In order to properly connect topics, let me present the following result:

Lemma 26 [Friedman-Khomskii-Kulikov]

If a κ-tree forcing notion P satisfies Axiom A∗ (the proof uses quite a bit
less), then every P-meager set is P-nowhere dense.

Proof: Let {Ai | i < κ} be a collection of P-nowhere dense sets. We need
to show that

⋃
i<κ Ai is P-nowhere dense. For every i < κ, let Di be the

dense subset Di = {p | [p] ∩ Ai = ∅} of P, using that Ai is P-nowhere
dense. Using Axiom A∗, construct 〈pi | i ≤ κ〉 and 〈Ei ⊆ Di | i < κ〉, such
that for all i < j ≤ κ,

pj ≤i pi , and

[pi ] ⊆
⋃
{[p] | p ∈ Ei}.

Hence, for every i < κ, [pκ] ⊆
⋃
{[p] | p ∈ Di}. In particular, [pκ] ∩ Ai = ∅

for all i < κ, hence
⋃

i<κ Ai is P-nowhere dense. �
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P-measurability

We will need the following, the forward direction of which is immediate:

Lemma 27 [Friedman-Khomskii-Kulikov]

If P is a topological notion of forcing that satisfies Axiom A∗, then X ⊂ 2κ

satisfies the Baire property in the P-topology if and only if

∀T ∈ P ∃S ≤ T ([S ] ⊆ X ∨ [S ] ∩ X = ∅).

In particular, for I = NSκ, X ⊆ κ satisfies the I-Baire property if every
I-basic open set [f ] contains an I-basic open set [g ] such that either
[g ] ⊆ X or [g ] ∩ X = ∅.
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On the Baire property

Quite similar arguments as for P-meager ≡ P-nowhere dense (without the
intermediate principle of Axiom A∗) show the following, where the case of
inaccessible κ is implicit in Friedman-Khomskii-Kulikov:

Theorem 28

If κ is inaccessible or ♦κ holds, then every comeager set, i.e., every
κ-intersection of open dense subsets of 2κ in the bounded topology,
contains a dense set that is open in the nonstationary topology.

This allows us to show the following, again due to Friedman et al. in the
case of inaccessible κ (and the proof below is essentially theirs):

Theorem 29

If κ is inaccessible or ♦κ holds, and every ∆1
1-subset of 2κ has the Baire

property (both of the latter can be forced by adding κ+-many Cohen
subsets of κ), then it does so also in the nonstationary topology.
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Proof of Theorem 29:

Let P denote κ-Silver forcing, let I = NSκ. Let A ∈ ∆1
1, and let f ∈ P.

We need to find an I-open subset of [f ] that is either contained in or
disjoint from A. Let C denote the club subset of κ that is the complement
of the domain of f , and enumerate C in increasing order as 〈cγ | γ < κ〉.
Let ϕ denote the natural order-preserving bijection between 2<κ and
extensions of f by bounded functions: Given s ∈ 2α with α < κ, let ϕ(s)
be the ⊆-minimal g ∈ P such that g extends f and g(cγ) = s(γ) for every
γ < α. Let ϕ∗ be the induced homeomorphism between 2κ and [f ]. Let
A′ = ϕ∗[A], which is again a ∆1

1-subset of 2κ, using that ∆1
1 is closed

under continuous preimages. Hence, A′ has the Baire property, by our
assumption. This means that either A′ is meager, or it is comeager in
some basic open set [s] of the bounded topology on 2κ. If A′ is meager,
Theorem 28 yields an I-open set [t] that is disjoint from A′. If A′ is
comeager in [s], applying Theorem 28 relativized to [s], we find an I-open
set [t] ⊆ A′ ∩ [s]. But then, in either case, (ϕ∗)−1[[t]] ⊆ [f ] is an I-open
set that is either disjoint from or contained in A, as desired. �
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A further result – Comparing notions of meagerness

Let I = NSκ.

Observation 30

If [f ] is an I-basic open set, with dom(f ) of size κ, then [f ] is meager (in
fact, nowhere dense) in the bounded topology. Thus, there is always a
meager set that is not I-meager.

Observation 31

Every set of size less than 2κ is I-meager. Hence, if non(Mκ) < 2κ, then
there is an I-meager set that is not meager.

Theorem 32

If κ is inaccessible or ♦κ holds, and the reaping number r(κ) = 2κ, then
there is an I-meager set which does not have the Baire property (and thus
in particular is not meager) in the bounded topology.
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Open Questions

Question 33

Is there a proper I-Borel hierarchy? If so, what is its length and structure?

We have answered the following positively whenever κ is inaccessible or
♦κ holds.

Question 34

Does κ-Silver forcing satisfy Axiom A∗ whenever κ is regular and
uncountable?

If κ is regular and uncountable, and I = NSκ, are I-meager sets
always I-nowhere dense?

We know the following holds for many κ, at least under certain
assumptions on generalized cardinal invariants.

Question 35

Let I = NSκ. Is there always an I-meager set that is not meager?
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