Ideal Topologies

Peter Holy

University of Udine

presenting joint work with

Marlene Koelbing (Vienna), Philipp Schlicht (Bristol), and Wolfgang Wohofsky (Vienna).

10.06.2020

Peter Holy (Udine)

Ideal Topologies

3 10.06.2020 1 / 1

990

イロト イポト イヨト イヨト

Ideals

Let κ be a cardinal (most of the time: regular and uncountable). An ideal on κ is a collection of *small* subsets of κ .

Definition 1 A collection $\mathcal{I} \subseteq \mathcal{P}(\kappa)$ is an *ideal* (on κ) if: • $\emptyset \in \mathcal{I}, \kappa \notin \mathcal{I}$, • $\forall A, B \quad A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$, and • $\forall A, B \quad A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. We will also demand our ideals to be *non-principal*, that is $\{\alpha\} \in \mathcal{I}$ for every $\alpha < \kappa$, and we demand them to be closed under $<\kappa$ -unions.

Examples: the bounded ideal, the nonstationary ideal NS_{κ} , ... Note that our additional demands imply that any ideal contains the bounded ideal.

イロト イロト イミト イヨト 二日

Cantor spaces

Let $\mathcal{P}(\kappa) \approx {}^{\kappa}2 = \{g \mid g : \kappa \to 2\}$. This collection is usually given a topology based on bounded ideal: The κ -*Cantor space* is the set ${}^{\kappa}2$ with the topology given by the basic open sets (which are also easily seen to be closed)

$$[f] = \{g \in {}^{\kappa}2 \mid f \subseteq g\}$$

for $f \in {}^{<\kappa}2 = \bigcup_{\alpha < \kappa} {}^{\alpha}2$.

However, we would obtain the same topology if we took as basic open sets all sets of the form [f] where f is a partial function from κ to 2 of size less than κ , i.e. a function with domain in the bounded ideal.

If $\kappa = \omega$, this is certainly the most natural topology on the space ${}^{\omega}2$. However, in particular if $\kappa > \omega$, we can equally consider topologies based on ideals other than bd_{κ} .

Let $\mathcal I$ be an ideal on κ .

Definition 2

The \mathcal{I} -topology is the topology with the basic open sets of the form [f] where $\operatorname{dom}(f) \in \mathcal{I}$ (as before, each [f] is also closed).

- Open sets are (as always) arbitrary unions of basic open sets, and we call open sets in the \mathcal{I} -topology \mathcal{I} -open sets, and similarly use \mathcal{I} -closed, ...
- Note that the *I*-topology *refines* the bounded topology: it has more open sets (and thus also more closed sets, ...).
- In case *I* = NS_κ, the basic open sets are thus *induced* by functions with non-stationary domain. We call the resulting topology the *nonstationary topology* (on *κ*).

イロト イポト イヨト イヨト 二日

In the bounded topology on κ^2 , one usually assumes $2^{<\kappa} = \kappa$, and then there are κ -many basic open sets, and 2^{κ} -many open sets (while there are $2^{2^{\kappa}}$ -many subsets of κ^2). If \mathcal{I} contains an unbounded subset of κ however, we get the maximal possible number of open sets:

Observation 3

Assume that $\mathcal I$ contains an unbounded subset A of κ . Then,

- (1) there are 2^{κ} -many disjoint \mathcal{I} -basic open sets with union $^{\kappa}2$, and
- (2) there are $2^{2^{\kappa}}$ -many \mathcal{I} -open sets.

Many natural properties of ideals correspond to prominent examples of subsets of our spaces to be topologically simple.

Tallness is a very natural property of ideals:

Definition 4

An ideal \mathcal{I} is *tall* if every unbounded set has an unbounded subset in \mathcal{I} .

Observation 5 NS_{κ} is tall.

On the collection of unbounded sets

Let $ub_{\kappa} \subseteq {}^{\kappa}2$ denote the collection of unbounded subsets of κ .

Observation 6 \mathcal{I} is tall if and only if ub_{κ} is \mathcal{I} -open.

Proof: First, assume that \mathcal{I} is a tall ideal. Let c_i^A denote the constant function with domain A and value i. Then,

 $ub_{\kappa} = \bigcup \{ [c_1^A] \mid A \in \mathcal{I} \cap ub_{\kappa} \} \text{ is } \mathcal{I}\text{-open.}$

Assume ub_{κ} is \mathcal{I} -open. Given $A \in ub_{\kappa}$, there is an \mathcal{I} -basic open set $[f] \subseteq ub_{\kappa}$ with $A \in [f]$. Since $[f] \subseteq ub_{\kappa}$, f takes value 1 on some $B \in ub_{\kappa}$ with $B \subseteq dom(f) \in \mathcal{I}$. Hence, $B \subseteq A$ is unbounded, as desired. \Box

A more intricate argument shows that for no \mathcal{I} is ub_{κ} an \mathcal{I} - F_{σ} set (a κ -union of \mathcal{I} -closed sets). Hence, if \mathcal{I} is tall, then there is an \mathcal{I} -open set that is not \mathcal{I} - F_{σ} .

The Club subsets of κ

Let $Club_{\kappa}$ denote the collection of club subsets of κ .

A similar argument as for ub_{κ} shows: If $\mathcal{I} = NS_{\kappa}$, then $Club_{\kappa}$ is not \mathcal{I} - F_{σ} .

However, as soon as ${\cal I}$ contains a stationary subset of $\kappa,$ we have the following contrasting result:

Observation 7

 $\mathcal I$ contains a stationary subset of κ if and only if Club_{κ} is $\mathcal I$ -closed.

Observation 8

 $\operatorname{Club}_{\kappa}$ is \mathcal{I} -open if and only if \mathcal{I} contains the set of all limit ordinals, and for every nonstationary set N of limit ordinals, there is a regressive function $f \colon N \to \kappa$ such that

$$\bigcup_{\alpha \in \mathbf{N}} [f(\alpha), \alpha) \in \mathcal{I}.$$

Stationary tallness

Stationary tallness relates to NS_{κ} as does tallness to bd_{κ} :

Definition 9

 ${\mathcal I}$ is stationary tall if every stationary set S has a stationary subset in ${\mathcal I}.$

Observation 10

If \mathcal{I} contains a club subset C of κ , then \mathcal{I} is stationary tall.

Proof: If S is stationary, $S \cap C \subseteq C \in \mathcal{I}$ is stationary.

An ideal \mathcal{I} is *maximal* if whenever A and B are disjoint subsets of κ , at least one of them is in \mathcal{I} .

Observation 11

Every maximal ideal is stationary tall.

Proof: Assume that S is a stationary subset of κ . Write S as disjoint union of two stationary sets $S_0 \cup S_1$, using Solovay's theorem. One of them has to be in \mathcal{I} by maximality.

Peter Holy (Udine)

10.06.2020 9 / 1

 C_{κ} denotes the collection of subsets of κ that contain a club. Usually, the club filter is the standard example of a complicated set – in the bounded topology, it is not *Borel* (Halko-Shelah).

Observation 12

 ${\mathcal I}$ is stationary tall if and only if ${\mathcal C}_{\kappa}$ is ${\mathcal I}\text{-closed}.$

Observation 13

 $\mathcal I$ contains a club subset of κ if and only if $\mathcal C_{\kappa}$ is $\mathcal I$ -open.

* E + * E +

However, the Halko-Shelah result generalizes to the nonstationary topology. \mathcal{I} -Borel sets are (iteratively) generated from the \mathcal{I} -open sets by taking κ -unions and complements.

Proposition 14

If $\mathcal{I} = \mathsf{NS}_{\kappa}$, then \mathcal{C}_{κ} is not \mathcal{I} -Borel.

Assuming that $2^{<\kappa} = \kappa$, we can construct a Bernstein set, and such a set can easily be shown to not be \mathcal{I} -Borel.

Proposition 15 If $2^{<\kappa} = \kappa$, then there is a non- \mathcal{I} -Borel set (for any \mathcal{I}).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 ● ○○○

Tree forcing topologies

Ideal topologies are in fact particular instances of tree forcing topologies.

Definition 16

- A κ -tree is a subset of $2^{<\kappa}$ closed under initial segments.
- A branch through a κ-tree T is some x ∈ 2^κ such that x ↾ α ∈ T for every α < κ. [T] ⊆ 2^κ denotes the set of all branches through T.
- A tree forcing notion P on κ is a notion of forcing in which conditions are κ -trees, including the full tree $2^{<\kappa}$, ordered by inclusion.
- Such a forcing notion P is topological if for any two R, S ∈ P and any x ∈ [R] ∩ [S], there is T ∈ P such that x ∈ [T] ⊆ [R] ∩ [S].
- If P is a topological notion of tree forcing on κ, we let the P-topology be the topology on 2^κ generated by the basic open sets of the form [T], for conditions T ∈ P.

イロト イポト イヨト イヨト 二日

The conditions in κ -Cohen forcing are the elements of $2^{<\kappa}$, ordered by reverse inclusion. But we can also identify κ -Cohen forcing with a tree forcing notion: Given $s \in 2^{<\kappa}$, let

$$T_s = \{t \in 2^{<\kappa} \mid t \subseteq s \lor s \subseteq t\}.$$

It is easy to see that κ -Cohen forcing corresponds to the tree forcing notion consisting of conditions T_s for $s \in 2^{<\kappa}$, and that the topology generated by κ -Cohen forcing (when viewed as a tree forcing notion on κ) is the standard bounded topology on 2^{κ} .

イロト イポト イヨト イヨト 二日

Definition 17

Let κ be an infinite cardinal and let \mathcal{I} be an ideal on κ . $\mathcal{G}_{\mathcal{I}}$, *Grigorieff* forcing with the ideal \mathcal{I} is the notion of forcing consisting of conditions which are partial functions p from κ to 2 such that $\operatorname{dom}(p) \in \mathcal{I}$, ordered by inclusion.

We can view $\mathcal{G}_{\mathcal{I}}$ as a tree forcing by identifying a condition $p \in \mathcal{G}_{\mathcal{I}}$ with the tree T on $2^{<\kappa}$ which we inductively construct as follows:

 $\emptyset \in T$. Given $t \in T$ of order-type α , let $t \cap 0 \in T$ if $p(\alpha) \neq 1$, and let $t \cap 1 \in T$ if $p(\alpha) \neq 0$ (these are both supposed to include the cases when α is not in the domain of p). At limit levels α , we extend every branch through the tree constructed so far.

It is easy to see that these two forcings are isomorphic. Then, if T is the tree on $2^{<\kappa}$ corresponding to the condition $p \in \mathcal{G}_{\mathcal{I}}$, we have [T] = [p]. Hence, the $\mathcal{G}_{\mathcal{I}}$ -topology is exactly the \mathcal{I} -topology, and $\mathcal{G}_{\mathcal{I}}$ is topological.

Definition 18

Let κ be a regular uncountable cardinal. κ -Silver forcing (or κ -club Silver forcing) \mathbb{V}_{κ} is the notion of forcing consisting of conditions p which are partial functions from κ to 2 such that the complement of the domain of p is a club subset of κ .

Note that \mathbb{V}_{κ} is a dense subset of Grigorieff forcing with NS_{κ} . This yields that \mathbb{V}_{κ} can be viewed as a κ -tree forcing notion. In fact, whenever p is a condition in $\mathcal{G}_{NS_{\kappa}}$ and $x \in 2^{\kappa}$ is such that $p \subseteq x$, then p can be extended to a condition $q \subseteq x$ in \mathbb{V}_{κ} . This easily yields that those two notions of forcing generate the same topology, and hence that the \mathbb{V}_{κ} -topology is exactly the nonstationary topology.

Sac

イロト イロト イヨト 一支

Unsursprisingly, combinatorial properties of tree forcing notions P yield properties of their corresponding topologies. For example, if P is $<\kappa$ -distributive, then the P-topology yields a κ -Baire space (i.e., the intersection of κ -many open dense sets of that space is nonempty).

Friedman, Khomskii and Kulikov (Regularity Properties of the generalized Reals, Annals of Pure and Applied Logic, 2016) investigated such consequences of a slight strengthening of Axiom A for κ -tree forcing notions. If κ is inaccessible, the classical proof that Silver forcing satisfies Axiom A also shows that \mathbb{V}_{κ} satisfies this strong form of Axiom A. We are going to show that a more intricate argument yields the same result under the assumption of \Diamond_{κ} – note that by results of Shelah, \Diamond_{κ} holds whenever $\kappa > \omega_1$ is a successor cardinal for which $2^{<\kappa} = \kappa$. This will allow us to infer results on the nonstationary topology on 2^{κ} for many cardinals κ (namely, all regular cardinals $\kappa > \omega_1$ that satisfy $2^{<\kappa} = \kappa$, and also for $\kappa = \omega_1$ in case \Diamond_{ω_1} holds).

イロト 不得 トイヨト イヨト 二日

The following slight strengthening of Axiom A for κ -tree forcing notions was introduced by Friedman, Khomskii and Kulikov:

Definition 19

A notion $\langle P, \leq \rangle$ of tree forcing on κ satisfies Axiom A^* if there are orderings $\{\leq_{\alpha} | \alpha < \kappa\}$ with $\leq_0 = \leq$, satisfying:

- 2 If $\langle p_{\alpha} \mid \alpha < \lambda \rangle$ is a sequence of conditions in P and $\lambda \leq \kappa$, satisfying that $p_{\beta} \leq_{\alpha} p_{\alpha}$ for all $\alpha < \beta < \lambda$, then there is $q \in P$ such that $q \leq_{\alpha} p_{\alpha}$ for all $\alpha < \lambda$.
- ③ For all p ∈ P, all D that are dense below p in P, and all α < κ, there exists E ⊆ D of size at most κ, and q ≤_α p such that E is predense below q, and such that additionally [q] ⊆ U{[r] | r ∈ E}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 ● ○○○

Friedman-Khomskii-Kulikov

Theorem 20 [Friedman-Khomskii-Kulikov]

If a tree forcing notion P satisfies Axiom A^* , then the nowhere dense sets in the P-topology are closed under κ -unions, i.e., all P-meager sets are P-nowhere dense.

Corollary 21

If κ is inaccessible and $\mathcal{I} = NS_{\kappa}$, then \mathcal{I} -meager $\equiv \mathcal{I}$ -nowhere dense.

Definition 22

 $X \subseteq 2^{\kappa}$ satisfies the property of Baire in the *P*-topology in case X can be written in the form $X = \mathcal{O}\Delta M$, where \mathcal{O} is *P*-open, and *M* is *P*-meager.

Theorem 23 [Friedman-Khomskii-Kulikov]

If κ is inaccessible and every Δ_1^1 -subset of 2^{κ} satisfies the property of Baire (in the bounded topology) – which is consistent relative to ZFC – then it does so also in the \mathbb{V}_{κ} -topology, i.e., the nonstationary topology on 2^{κ} .

Peter Holy (Udine)

Let me remind you once again about Axiom A^* :

Definition 24

A notion $\langle P, \leq \rangle$ of tree forcing on κ satisfies Axiom A^* if there are orderings $\{\leq_{\alpha} | \alpha < \kappa\}$ with $\leq_0 = \leq$, satisfying:

- 2 If $\langle p_{\alpha} \mid \alpha < \lambda \rangle$ is a sequence of conditions in P and $\lambda \leq \kappa$, satisfying that $p_{\beta} \leq_{\alpha} p_{\alpha}$ for all $\alpha < \beta < \lambda$, then there is $q \in P$ such that $q \leq_{\alpha} p_{\alpha}$ for all $\alpha < \lambda$.
- ③ For all p ∈ P, all D that are dense below p in P, and all α < κ, there exists E ⊆ D of size at most κ, and q ≤_α p such that E is predense below q, and such that additionally [q] ⊆ U{[r] | r ∈ E}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

$\kappa\text{-Silver}$ forcing satisfies Axiom A^*

Theorem 10

If \diamondsuit_{κ} holds, then $\mathbb{V} = \mathbb{V}_{\kappa}$ satisfies Axiom A^* .

Proof: For any $\alpha < \kappa$ and $p, q \in \mathbb{V}$, let $q \leq_{\alpha} p$ if $q \leq p$ and the first α -many elements of the complements of the domains of p and of q are the same. It is clear (or at least easy to check) that Items (1) and (2) in Definition 5 are thus satisfied, and we only have to verify Item (3).

Let $p \in \mathbb{V}$, let $\alpha < \kappa$, and let $D \subseteq \mathbb{V}$ be dense below p. We need to find $q \leq_{\alpha} p$ and $E \subseteq D$ of size at most κ such that E is predense below q. Fix a \Diamond_{κ} -sequence $\langle A_i \mid i < \kappa \rangle$: $\forall A \subseteq \kappa \{ i < \kappa \mid A \cap i = A_i \}$ is a stationary subset of κ .

We inductively construct a decreasing sequence $\langle p_i \mid i \leq \kappa \rangle$ of conditions in \mathbb{V} with $p_i = p$ for $i \leq \alpha$, and a sequence $\langle \alpha_i \mid i < \kappa \rangle$ of ordinals with the property that $\langle \alpha_j \mid j \leq i \rangle$ enumerates the first (i + 1)-many elements of $\kappa \setminus \operatorname{dom}(p_i)$ for every $i \leq \kappa$, as follows. Let $\langle \alpha_i \mid i \leq \alpha \rangle$ enumerate the first $\alpha + 1$ -many elements of the complement of the domain of p_i . Assume that we have constructed p_i for some $i \ge \alpha$, and also α_j for $j \le i$.

Using that D is dense below p, let $q_i^0 \leq p_i$ be such that

•
$$q_i^0(\alpha_j) = A_i(j)$$
 for all $j < i$,
• $q_i^0(\alpha_i) = 0$, and
• $q_i^0 \in D$,
d let $q_i^1 \leq q_i^0 \upharpoonright (\operatorname{dom}(q_i^0)) \land (\alpha_i)$) be such that

and let $q_i^1 \leq q_i^0 \upharpoonright (\operatorname{dom}(q_i^0) \setminus \{\alpha_i\})$ be such that

•
$$q_i^1(lpha_i) = 1$$
, and
• $q_i^1 \in D$.

Let $p_{i+1} = q_i^1 \upharpoonright (\operatorname{dom}(q_i^1) \setminus \{\alpha_j \mid j \leq i\})$, and note that $p_{i+1} \leq_i p_i$. Let α_{i+1} be the least element of $\kappa \setminus \operatorname{dom}(p_{i+1})$ above α_i .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 ● ○○○

For limit ordinals $i \leq \kappa$, let $p_i = \bigcup_{j < i} p_j$, and if $i < \kappa$, let $\alpha_i = \bigcup_{j < i} \alpha_j$ be the least element of $\kappa \setminus \operatorname{dom}(p_i)$. Let $q = p_{\kappa}$, and let $E = \{q_i^0 \mid i < \kappa\} \cup \{q_i^1 \mid i < \kappa\}$. To verify Axiom A, we want to show that E is predense below q.

Thus, let $r \leq q$ be given. Using the properties of our diamond sequence, pick $i < \kappa$ such that $i \geq \alpha$, and such that for all j < i with $\alpha_j \in \text{dom}(r)$, $A_i(j) = r(\alpha_j)$. Pick $\delta \in \{0, 1\}$ such that $r(\alpha_i) = \delta$ in case $\alpha_i \in \text{dom}(r)$. Then, q_i^{δ} is compatible to r, as desired.

In order to check the additional property for Axiom A^* , note that any extension s of q to a total function from κ to 2 can be treated in the same way as r above, yielding some $i < \kappa$ and $\delta \in \{0, 1\}$ such that $s \in [q_i^{\delta}]$. \Box

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 ● ○○○

So what does Axiom A^* have to do with meager sets?

In order to properly connect topics, let me present the following result:

Lemma 26 [Friedman-Khomskii-Kulikov]

If a κ -tree forcing notion P satisfies Axiom A^* (the proof uses quite a bit less), then every P-meager set is P-nowhere dense.

Proof: Let $\{A_i \mid i < \kappa\}$ be a collection of *P*-nowhere dense sets. We need to show that $\bigcup_{i < \kappa} A_i$ is *P*-nowhere dense. For every $i < \kappa$, let D_i be the dense subset $D_i = \{p \mid [p] \cap A_i = \emptyset\}$ of *P*, using that A_i is *P*-nowhere dense. Using Axiom A^* , construct $\langle p_i \mid i \leq \kappa \rangle$ and $\langle E_i \subseteq D_i \mid i < \kappa \rangle$, such that for all $i < j \leq \kappa$,

- $p_j \leq_i p_i$, and
- $[p_i] \subseteq \bigcup \{ [p] \mid p \in E_i \}.$

Hence, for every $i < \kappa$, $[p_{\kappa}] \subseteq \bigcup \{[p] \mid p \in D_i\}$. In particular, $[p_{\kappa}] \cap A_i = \emptyset$ for all $i < \kappa$, hence $\bigcup_{i < \kappa} A_i$ is *P*-nowhere dense.

イロト イロト イヨト 一支

We will need the following, the forward direction of which is immediate:

Lemma 27 [Friedman-Khomskii-Kulikov]

If P is a topological notion of forcing that satisfies Axiom A^* , then $X \subset 2^{\kappa}$ satisfies the Baire property in the P-topology if and only if

$$\forall T \in P \; \exists S \leq T \; ([S] \subseteq X \lor [S] \cap X = \emptyset).$$

In particular, for $\mathcal{I} = NS_{\kappa}$, $X \subseteq \kappa$ satisfies the \mathcal{I} -Baire property if every \mathcal{I} -basic open set [f] contains an \mathcal{I} -basic open set [g] such that either $[g] \subseteq X$ or $[g] \cap X = \emptyset$.

イロト イポト イヨト イヨト 二日

On the Baire property

Quite similar arguments as for *P*-meager \equiv *P*-nowhere dense (without the intermediate principle of Axiom A^*) show the following, where the case of inaccessible κ is implicit in Friedman-Khomskii-Kulikov:

Theorem 28

If κ is inaccessible or \diamondsuit_{κ} holds, then every comeager set, i.e., every κ -intersection of open dense subsets of 2^{κ} in the bounded topology, contains a dense set that is open in the nonstationary topology.

This allows us to show the following, again due to Friedman et al. in the case of inaccessible κ (and the proof below is essentially theirs):

Theorem 29

If κ is inaccessible or \Diamond_{κ} holds, and every Δ_1^1 -subset of 2^{κ} has the Baire property (both of the latter can be forced by adding κ^+ -many Cohen subsets of κ), then it does so also in the nonstationary topology.

Sac

イロト イポト イヨト イヨト

Proof of Theorem 29:

Let *P* denote κ -Silver forcing, let $\mathcal{I} = NS_{\kappa}$. Let $A \in \Delta_1^1$, and let $f \in P$. We need to find an \mathcal{I} -open subset of [f] that is either contained in or disjoint from A. Let C denote the club subset of κ that is the complement of the domain of f, and enumerate C in increasing order as $\langle c_{\gamma} | \gamma < \kappa \rangle$. Let φ denote the natural order-preserving bijection between $2^{<\kappa}$ and extensions of f by bounded functions: Given $s \in 2^{\alpha}$ with $\alpha < \kappa$, let $\varphi(s)$ be the \subseteq -minimal $g \in P$ such that g extends f and $g(c_{\gamma}) = s(\gamma)$ for every $\gamma < \alpha$. Let φ^* be the induced homeomorphism between 2^{κ} and [f]. Let $A' = \varphi^*[A]$, which is again a Δ_1^1 -subset of 2^{κ} , using that Δ_1^1 is closed under continuous preimages. Hence, A' has the Baire property, by our assumption. This means that either A' is meager, or it is comeager in some basic open set [s] of the bounded topology on 2^{κ} . If A' is meager, Theorem 28 yields an \mathcal{I} -open set [t] that is disjoint from A'. If A' is comeager in [s], applying Theorem 28 relativized to [s], we find an \mathcal{I} -open set $[t] \subseteq A' \cap [s]$. But then, in either case, $(\varphi^*)^{-1}[[t]] \subseteq [f]$ is an \mathcal{I} -open set that is either disjoint from or contained in A, as desired.

・ロト ・ 同ト ・ ヨト

A further result - Comparing notions of meagerness

Let $\mathcal{I} = NS_{\kappa}$.

Observation 30

If [f] is an \mathcal{I} -basic open set, with $\operatorname{dom}(f)$ of size κ , then [f] is meager (in fact, nowhere dense) in the bounded topology. Thus, there is always a meager set that is not \mathcal{I} -meager.

Observation 31

Every set of size less than 2^{κ} is \mathcal{I} -meager. Hence, if $\operatorname{non}(\mathcal{M}_{\kappa}) < 2^{\kappa}$, then there is an \mathcal{I} -meager set that is not meager.

Theorem 32

If κ is inaccessible or \diamondsuit_{κ} holds, and the reaping number $\mathfrak{r}(\kappa) = 2^{\kappa}$, then there is an \mathcal{I} -meager set which does not have the Baire property (and thus in particular is not meager) in the bounded topology.

Sac

◆ロト ◆聞ト ◆ヨト ◆ヨト

Open Questions

Question 33

Is there a proper $\mathcal{I}\text{-}\mathsf{Borel}$ hierarchy? If so, what is its length and structure?

We have answered the following positively whenever κ is inaccessible or \diamondsuit_{κ} holds.

Question 34

- Does κ-Silver forcing satisfy Axiom A* whenever κ is regular and uncountable?
- If κ is regular and uncountable, and $\mathcal{I} = NS_{\kappa}$, are \mathcal{I} -meager sets always \mathcal{I} -nowhere dense?

We know the following holds for many κ , at least under certain assumptions on generalized cardinal invariants.

Question 35

Let $\mathcal{I} = NS_{\kappa}$. Is there always an \mathcal{I} -meager set that is not meager?